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Dependent Random Variables -

! The joint entropy of X, Y is  

! Entropy is additive for independent random variables

! The marginal entropy of X is another name for the entropy of X, H(X)

The Joint Entropy

6

H (X ,Y ) = P(x, y) log 1
P(x, y)xy∈AxAy

∑

H (X ,Y ) =H (X )+ H (Y ) iff P(x, y) = P(x)P( y)



Dependent Random Variables -

! The conditional entropy of X given y = bk  

is the entropy of the probability distribution P(x | y = bk). 

! For each value of bk we have, in general, a different value of 

! The conditional entropy of X given Y is the average over y of the conditional entropy of X 

given y

Conditional Entropy

7

H (X | y = bk ) = P(x | y = bk ) log
1

P(x | y = bk )x∈Ax

∑

H (X | y = bk )

H (X |Y ) = P( y)H (X | y)
y∈Ay

∑



Dependent Random Variables -

! The conditional entropy of X given Y is the average over y of the conditional entropy of X 

given y

! This measures the average uncertainty that remains about x when y is known. 

Conditional Entropy of X given Y

8

H (X |Y ) = P( y)H (X | y)
y∈Ay

∑

H (X |Y ) = P( y) P(x | y) log 1
P(x | y)x∈Ax

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥y∈Ay

∑

H (X |Y ) = P(x, y) log 1
P(x | y)xy∈AxAy

∑



Dependent Random Variables -

! Chain rule for information content

! The information content of x and y is 

! the information content of x + 

! the information content of y given x. 

Chain Rule for information content

9

log
1

P(x, y)
= log 1

P(x)
+ log 1

P( y | x)

P(x, y) = P(x)P( y | x)

= P( y)P(x | y)

h(x, y) = h(x)+ h( y | x)



Dependent Random Variables -

! The joint entropy, conditional entropy and marginal entropy are related by 

! The uncertainty of X and Y is

! the uncertainty of X plus 

! the uncertainty of Y given X. 

! Or 

! the uncertainty of Y plus 

! the uncertainty of X given Y. 

Chain Rule for Entropy

10

H (X ,Y ) = H (X )+ H (Y | X ) = H (Y )+ H (X |Y )
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Dependent Random Variables -

! The mutual information between X and Y is 

 

and satisfies I(X; Y ) = I(Y ; X),  and I(X; Y) ≥ 0. 

! It measures the average reduction in uncertainty about x that results from learning the 

value of y; 

! or, the average amount of information that y conveys about x. 

Chain Rule for Entropy

12

I(X ;Y ) = H (X )− H (X |Y ) I(X ;Y ) = H (Y )− H (Y | X )



Dependent Random Variables -

! The conditional mutual information between X and Y given z = ck

! is the mutual information between the random variables X and Y in the joint ensemble 

P(x, y | z = ck),

! The conditional mutual information between X and Y given Z

! is the average over z of I(X; Y | z)

The conditional mutual information

13

I(X ;Y | z = ck ) = H (X | z = ck )− H (X |Y , z = ck )

I(X ;Y | Z ) = H (X | Z )− H (X |Y ,Z )
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! No other ‘three-term entropies’ will be defined. 

! For example:

! expressions such as I(X; Y ; Z) and I(X  | Y ; Z) are illegal. 

! But you may put conjunctions of arbitrary numbers of variables in each of the three 

spots in the expression I( X ; Y | Z):

! I(A, B ; C, D | E , F) is fine !

! it measures how much information on average c and d convey about a and b, 

assuming e and f are known.

No other ‘three-term entropies’ ! 
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H(X,Y )

H(X)

H(Y )

I(X;Y )H(X |Y ) H(Y |X)

Figure 8.1. The relationship
between joint information,
marginal entropy, conditional
entropy and mutual entropy.

8.2 Exercises

! Exercise 8.1.[1 ] Consider three independent random variables u, v,w with en-
tropies Hu,Hv,Hw. Let X ≡ (U, V ) and Y ≡ (V,W ). What is H(X,Y )?
What is H(X |Y )? What is I(X;Y )?

! Exercise 8.2.[3, p.142] Referring to the definitions of conditional entropy (8.3–
8.4), confirm (with an example) that it is possible for H(X | y = bk) to
exceed H(X), but that the average, H(X |Y ), is less than H(X). So
data are helpful – they do not increase uncertainty, on average.

! Exercise 8.3.[2, p.143] Prove the chain rule for entropy, equation (8.7).
[H(X,Y ) = H(X) + H(Y |X)].

Exercise 8.4.[2, p.143] Prove that the mutual information I(X;Y ) ≡ H(X) −
H(X |Y ) satisfies I(X;Y ) = I(Y ;X) and I(X;Y ) ≥ 0.

[Hint: see exercise 2.26 (p.37) and note that

I(X;Y ) = DKL(P (x, y)||P (x)P (y)).] (8.11)

Exercise 8.5.[4 ] The ‘entropy distance’ between two random variables can be
defined to be the difference between their joint entropy and their mutual
information:

DH(X,Y ) ≡ H(X,Y ) − I(X;Y ). (8.12)

Prove that the entropy distance satisfies the axioms for a distance –
DH(X,Y ) ≥ 0, DH(X,X)= 0, DH(X,Y )=DH(Y,X), and DH(X,Z) ≤
DH(X,Y ) + DH(Y,Z). [Incidentally, we are unlikely to see DH(X,Y )
again but it is a good function on which to practise inequality-proving.]

Exercise 8.6.[2, p.147] A joint ensemble XY has the following joint distribution.

P (x, y) x
1 2 3 4

1 1/8 1/16 1/32 1/32

y 2 1/16 1/8 1/32 1/32

3 1/16 1/16 1/16 1/16

4 1/4 0 0 0
4
3
2
1

1 2 3 4

What is the joint entropy H(X,Y )? What are the marginal entropies
H(X) and H(Y )? For each value of y, what is the conditional entropy
H(X | y)? What is the conditional entropy H(X |Y )? What is the
conditional entropy of Y given X? What is the mutual information
between X and Y ?

H (X ,Y ) = H (X )+ H (Y | X )

H (X ,Y ) = H (Y )+ H (X |Y )

I(X ;Y ) = H (X )− H (X |Y )
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Exercise 8.5.[4 ] The ‘entropy distance’ between two random variables can be
defined to be the difference between their joint entropy and their mutual
information:

DH(X,Y ) ≡ H(X,Y ) − I(X;Y ). (8.12)

Prove that the entropy distance satisfies the axioms for a distance –
DH(X,Y ) ≥ 0, DH(X,X)= 0, DH(X,Y )=DH(Y,X), and DH(X,Z) ≤
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P (x, y) x
1 2 3 4

1 1/8 1/16 1/32 1/32

y 2 1/16 1/8 1/32 1/32

3 1/16 1/16 1/16 1/16
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4
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2
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What is the joint entropy H(X,Y )? What are the marginal entropies
H(X) and H(Y )? For each value of y, what is the conditional entropy
H(X | y)? What is the conditional entropy H(X |Y )? What is the
conditional entropy of Y given X? What is the mutual information
between X and Y ?

I(X ;Y ) = H (X )− H (X |Y )

H (X ) = I(X ;Y )+ H (X |Y )

H (X |Y ) = H (X )− I(X ;Y )
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information:

DH(X,Y ) ≡ H(X,Y ) − I(X;Y ). (8.12)
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DH(X,Y ) ≥ 0, DH(X,X)= 0, DH(X,Y )=DH(Y,X), and DH(X,Z) ≤
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P (x, y) x
1 2 3 4
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2
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What is the joint entropy H(X,Y )? What are the marginal entropies
H(X) and H(Y )? For each value of y, what is the conditional entropy
H(X | y)? What is the conditional entropy H(X |Y )? What is the
conditional entropy of Y given X? What is the mutual information
between X and Y ?

I(X ;Y ) = H (Y )− H (Y | X ) H (Y ) = I(X ;Y )+ H (Y | X )
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exceed H(X), but that the average, H(X |Y ), is less than H(X). So
data are helpful – they do not increase uncertainty, on average.

! Exercise 8.3.[2, p.143] Prove the chain rule for entropy, equation (8.7).
[H(X,Y ) = H(X) + H(Y |X)].

Exercise 8.4.[2, p.143] Prove that the mutual information I(X;Y ) ≡ H(X) −
H(X |Y ) satisfies I(X;Y ) = I(Y ;X) and I(X;Y ) ≥ 0.

[Hint: see exercise 2.26 (p.37) and note that
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Exercise 8.5.[4 ] The ‘entropy distance’ between two random variables can be
defined to be the difference between their joint entropy and their mutual
information:

DH(X,Y ) ≡ H(X,Y ) − I(X;Y ). (8.12)

Prove that the entropy distance satisfies the axioms for a distance –
DH(X,Y ) ≥ 0, DH(X,X)= 0, DH(X,Y )=DH(Y,X), and DH(X,Z) ≤
DH(X,Y ) + DH(Y,Z). [Incidentally, we are unlikely to see DH(X,Y )
again but it is a good function on which to practise inequality-proving.]

Exercise 8.6.[2, p.147] A joint ensemble XY has the following joint distribution.

P (x, y) x
1 2 3 4

1 1/8 1/16 1/32 1/32

y 2 1/16 1/8 1/32 1/32

3 1/16 1/16 1/16 1/16

4 1/4 0 0 0
4
3
2
1

1 2 3 4

What is the joint entropy H(X,Y )? What are the marginal entropies
H(X) and H(Y )? For each value of y, what is the conditional entropy
H(X | y)? What is the conditional entropy H(X |Y )? What is the
conditional entropy of Y given X? What is the mutual information
between X and Y ?

H (Y ) ≥ H (Y | X )
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Entropy Distance
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! Exercise 8.1.[1 ] Consider three independent random variables u, v,w with en-
tropies Hu,Hv,Hw. Let X ≡ (U, V ) and Y ≡ (V,W ). What is H(X,Y )?
What is H(X |Y )? What is I(X;Y )?

! Exercise 8.2.[3, p.142] Referring to the definitions of conditional entropy (8.3–
8.4), confirm (with an example) that it is possible for H(X | y = bk) to
exceed H(X), but that the average, H(X |Y ), is less than H(X). So
data are helpful – they do not increase uncertainty, on average.

! Exercise 8.3.[2, p.143] Prove the chain rule for entropy, equation (8.7).
[H(X,Y ) = H(X) + H(Y |X)].

Exercise 8.4.[2, p.143] Prove that the mutual information I(X;Y ) ≡ H(X) −
H(X |Y ) satisfies I(X;Y ) = I(Y ;X) and I(X;Y ) ≥ 0.

[Hint: see exercise 2.26 (p.37) and note that

I(X;Y ) = DKL(P (x, y)||P (x)P (y)).] (8.11)

Exercise 8.5.[4 ] The ‘entropy distance’ between two random variables can be
defined to be the difference between their joint entropy and their mutual
information:

DH(X,Y ) ≡ H(X,Y ) − I(X;Y ). (8.12)

Prove that the entropy distance satisfies the axioms for a distance –
DH(X,Y ) ≥ 0, DH(X,X)= 0, DH(X,Y )=DH(Y,X), and DH(X,Z) ≤
DH(X,Y ) + DH(Y,Z). [Incidentally, we are unlikely to see DH(X,Y )
again but it is a good function on which to practise inequality-proving.]

Exercise 8.6.[2, p.147] A joint ensemble XY has the following joint distribution.

P (x, y) x
1 2 3 4

1 1/8 1/16 1/32 1/32

y 2 1/16 1/8 1/32 1/32

3 1/16 1/16 1/16 1/16

4 1/4 0 0 0
4
3
2
1

1 2 3 4

What is the joint entropy H(X,Y )? What are the marginal entropies
H(X) and H(Y )? For each value of y, what is the conditional entropy
H(X | y)? What is the conditional entropy H(X |Y )? What is the
conditional entropy of Y given X? What is the mutual information
between X and Y ?
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DH (X ,Y ) = H (X ,Y )− I(X ;Y )
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DH (X ,Y ) ≥ 0

DH (X ,X ) = 0

DH (X ,Y ) = DH (Y ,X )

DH (X ,Z ) ≤ DH (X ,Y )+ DH (Y ,Z )

Axioms for a distance 
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I(X ;Y ) = H (X )− H (X |Y )

H(X)

H(X |Y)
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Channel
X Y

H(X) H(X | y = bk)

Notice that H(X | y = bk) may be larger or smaller than H(X) 
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! A joint ensemble XY has the following joint distribution

! Calculate H(X), H(Y) 

! Calculate H(X | y) for all values of y,

! H(X | Y) and H(Y | X)

! I(X; Y)
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defined to be the difference between their joint entropy and their mutual
information:
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DH(X,Y ) ≥ 0, DH(X,X)= 0, DH(X,Y )=DH(Y,X), and DH(X,Z) ≤
DH(X,Y ) + DH(Y,Z). [Incidentally, we are unlikely to see DH(X,Y )
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! Compute the marginal probabilities 

! Compute the Joint Entropy

! The marginal entropies 
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with arbitrarily small probability of error.

9.2 Review of probability and information

As an example, we take the joint distribution XY from exercise 8.6 (p.140).
The marginal distributions P (x) and P (y) are shown in the margins.

P (x, y) x P (y)
1 2 3 4

1 1/8 1/16 1/32 1/32 1/4
y 2 1/16 1/8 1/32 1/32 1/4

3 1/16 1/16 1/16 1/16 1/4
4 1/4 0 0 0 1/4

P (x) 1/2 1/4 1/8 1/8

The joint entropy is H(X,Y ) = 27/8 bits. The marginal entropies are H(X) =
7/4 bits and H(Y ) = 2 bits.

We can compute the conditional distribution of x for each value of y, and
the entropy of each of those conditional distributions:

P (x | y) x H(X | y)/bits
1 2 3 4

1 1/2 1/4 1/8 1/8 7/4
y 2 1/4 1/2 1/8 1/8 7/4

3 1/4 1/4 1/4 1/4 2
4 1 0 0 0 0

H(X |Y ) = 11/8

Note that whereas H(X | y =4) = 0 is less than H(X), H(X | y =3) is greater
than H(X). So in some cases, learning y can increase our uncertainty about
x. Note also that although P (x | y =2) is a different distribution from P (x),
the conditional entropy H(X | y =2) is equal to H(X). So learning that y
is 2 changes our knowledge about x but does not reduce the uncertainty of
x, as measured by the entropy. On average though, learning y does convey
information about x, since H(X |Y ) < H(X).

One may also evaluate H(Y |X) = 13/8 bits. The mutual information is
I(X;Y ) = H(X) − H(X |Y ) = 3/8 bits.

9.3 Noisy channels

A discrete memoryless channel Q is characterized by an input alphabet
AX , an output alphabet AY , and a set of conditional probability distri-
butions P (y |x), one for each x ∈ AX .

These transition probabilities may be written in a matrix

Qj|i = P (y = bj |x=ai). (9.1)

I usually orient this matrix with the output variable j indexing the rows
and the input variable i indexing the columns, so that each column of Q is
a probability vector. With this convention, we can obtain the probability
of the output, pY , from a probability distribution over the input, pX , by
right-multiplication:

pY = QpX . (9.2)

H (X ,Y ) = P(x, y) log 1
P(x, y)xy∈AxAy

∑ H (X ,Y ) = 27 / 8bits = 3.375bits

H (X ) = 7 / 4bits = 1.75bits H (Y ) = 2bits
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! We can compute the conditional distribution of x for each value of y, and the entropy of 

each of those conditional distributions
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x. Note also that although P (x | y =2) is a different distribution from P (x),
the conditional entropy H(X | y =2) is equal to H(X). So learning that y
is 2 changes our knowledge about x but does not reduce the uncertainty of
x, as measured by the entropy. On average though, learning y does convey
information about x, since H(X |Y ) < H(X).

One may also evaluate H(Y |X) = 13/8 bits. The mutual information is
I(X;Y ) = H(X) − H(X |Y ) = 3/8 bits.

9.3 Noisy channels

A discrete memoryless channel Q is characterized by an input alphabet
AX , an output alphabet AY , and a set of conditional probability distri-
butions P (y |x), one for each x ∈ AX .

These transition probabilities may be written in a matrix

Qj|i = P (y = bj |x=ai). (9.1)

I usually orient this matrix with the output variable j indexing the rows
and the input variable i indexing the columns, so that each column of Q is
a probability vector. With this convention, we can obtain the probability
of the output, pY , from a probability distribution over the input, pX , by
right-multiplication:

pY = QpX . (9.2)
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9.2 Review of probability and information

As an example, we take the joint distribution XY from exercise 8.6 (p.140).
The marginal distributions P (x) and P (y) are shown in the margins.
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1 2 3 4
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The joint entropy is H(X,Y ) = 27/8 bits. The marginal entropies are H(X) =
7/4 bits and H(Y ) = 2 bits.

We can compute the conditional distribution of x for each value of y, and
the entropy of each of those conditional distributions:

P (x | y) x H(X | y)/bits
1 2 3 4

1 1/2 1/4 1/8 1/8 7/4
y 2 1/4 1/2 1/8 1/8 7/4

3 1/4 1/4 1/4 1/4 2
4 1 0 0 0 0

H(X |Y ) = 11/8

Note that whereas H(X | y =4) = 0 is less than H(X), H(X | y =3) is greater
than H(X). So in some cases, learning y can increase our uncertainty about
x. Note also that although P (x | y =2) is a different distribution from P (x),
the conditional entropy H(X | y =2) is equal to H(X). So learning that y
is 2 changes our knowledge about x but does not reduce the uncertainty of
x, as measured by the entropy. On average though, learning y does convey
information about x, since H(X |Y ) < H(X).

One may also evaluate H(Y |X) = 13/8 bits. The mutual information is
I(X;Y ) = H(X) − H(X |Y ) = 3/8 bits.

9.3 Noisy channels

A discrete memoryless channel Q is characterized by an input alphabet
AX , an output alphabet AY , and a set of conditional probability distri-
butions P (y |x), one for each x ∈ AX .

These transition probabilities may be written in a matrix

Qj|i = P (y = bj |x=ai). (9.1)

I usually orient this matrix with the output variable j indexing the rows
and the input variable i indexing the columns, so that each column of Q is
a probability vector. With this convention, we can obtain the probability
of the output, pY , from a probability distribution over the input, pX , by
right-multiplication:

pY = QpX . (9.2)

P(x | y) = P(x, y) / P( y)
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x. Note also that although P (x | y =2) is a different distribution from P (x),
the conditional entropy H(X | y =2) is equal to H(X). So learning that y
is 2 changes our knowledge about x but does not reduce the uncertainty of
x, as measured by the entropy. On average though, learning y does convey
information about x, since H(X |Y ) < H(X).

One may also evaluate H(Y |X) = 13/8 bits. The mutual information is
I(X;Y ) = H(X) − H(X |Y ) = 3/8 bits.

9.3 Noisy channels

A discrete memoryless channel Q is characterized by an input alphabet
AX , an output alphabet AY , and a set of conditional probability distri-
butions P (y |x), one for each x ∈ AX .

These transition probabilities may be written in a matrix

Qj|i = P (y = bj |x=ai). (9.1)

I usually orient this matrix with the output variable j indexing the rows
and the input variable i indexing the columns, so that each column of Q is
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Note that whereas H(X | y =4) = 0 is less than H(X), H(X | y =3) is greater
than H(X). So in some cases, learning y can increase our uncertainty about
x. Note also that although P (x | y =2) is a different distribution from P (x),
the conditional entropy H(X | y =2) is equal to H(X). So learning that y
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One may also evaluate H(Y |X) = 13/8 bits. The mutual information is
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9.3 Noisy channels

A discrete memoryless channel Q is characterized by an input alphabet
AX , an output alphabet AY , and a set of conditional probability distri-
butions P (y |x), one for each x ∈ AX .

These transition probabilities may be written in a matrix

Qj|i = P (y = bj |x=ai). (9.1)

I usually orient this matrix with the output variable j indexing the rows
and the input variable i indexing the columns, so that each column of Q is
a probability vector. With this convention, we can obtain the probability
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∑



Dependent Random Variables -

An Example

31

! We can compute the conditional distribution of x for each value of y, and the entropy of each 

of those conditional distributions

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

9.2: Review of probability and information 147

with arbitrarily small probability of error.

9.2 Review of probability and information

As an example, we take the joint distribution XY from exercise 8.6 (p.140).
The marginal distributions P (x) and P (y) are shown in the margins.

P (x, y) x P (y)
1 2 3 4

1 1/8 1/16 1/32 1/32 1/4
y 2 1/16 1/8 1/32 1/32 1/4

3 1/16 1/16 1/16 1/16 1/4
4 1/4 0 0 0 1/4

P (x) 1/2 1/4 1/8 1/8

The joint entropy is H(X,Y ) = 27/8 bits. The marginal entropies are H(X) =
7/4 bits and H(Y ) = 2 bits.

We can compute the conditional distribution of x for each value of y, and
the entropy of each of those conditional distributions:

P (x | y) x H(X | y)/bits
1 2 3 4

1 1/2 1/4 1/8 1/8 7/4
y 2 1/4 1/2 1/8 1/8 7/4

3 1/4 1/4 1/4 1/4 2
4 1 0 0 0 0

H(X |Y ) = 11/8

Note that whereas H(X | y =4) = 0 is less than H(X), H(X | y =3) is greater
than H(X). So in some cases, learning y can increase our uncertainty about
x. Note also that although P (x | y =2) is a different distribution from P (x),
the conditional entropy H(X | y =2) is equal to H(X). So learning that y
is 2 changes our knowledge about x but does not reduce the uncertainty of
x, as measured by the entropy. On average though, learning y does convey
information about x, since H(X |Y ) < H(X).

One may also evaluate H(Y |X) = 13/8 bits. The mutual information is
I(X;Y ) = H(X) − H(X |Y ) = 3/8 bits.

9.3 Noisy channels

A discrete memoryless channel Q is characterized by an input alphabet
AX , an output alphabet AY , and a set of conditional probability distri-
butions P (y |x), one for each x ∈ AX .

These transition probabilities may be written in a matrix

Qj|i = P (y = bj |x=ai). (9.1)

I usually orient this matrix with the output variable j indexing the rows
and the input variable i indexing the columns, so that each column of Q is
a probability vector. With this convention, we can obtain the probability
of the output, pY , from a probability distribution over the input, pX , by
right-multiplication:

pY = QpX . (9.2)
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than H(X). So in some cases, learning y can increase our uncertainty about
x. Note also that although P (x | y =2) is a different distribution from P (x),
the conditional entropy H(X | y =2) is equal to H(X). So learning that y
is 2 changes our knowledge about x but does not reduce the uncertainty of
x, as measured by the entropy. On average though, learning y does convey
information about x, since H(X |Y ) < H(X).

One may also evaluate H(Y |X) = 13/8 bits. The mutual information is
I(X;Y ) = H(X) − H(X |Y ) = 3/8 bits.

9.3 Noisy channels

A discrete memoryless channel Q is characterized by an input alphabet
AX , an output alphabet AY , and a set of conditional probability distri-
butions P (y |x), one for each x ∈ AX .

These transition probabilities may be written in a matrix

Qj|i = P (y = bj |x=ai). (9.1)

I usually orient this matrix with the output variable j indexing the rows
and the input variable i indexing the columns, so that each column of Q is
a probability vector. With this convention, we can obtain the probability
of the output, pY , from a probability distribution over the input, pX , by
right-multiplication:

pY = QpX . (9.2)

P(x | y) = P(x, y) / P( y)

H (X | y) = P(x | y) log 1
P(x | y)x∈Ax

∑

H (X |Y ) = P( y)H (X | y)
y∈AY

∑
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Note that whereas H(X | y =4) = 0 is less than H(X), H(X | y =3) is greater
than H(X). So in some cases, learning y can increase our uncertainty about
x. Note also that although P (x | y =2) is a different distribution from P (x),
the conditional entropy H(X | y =2) is equal to H(X). So learning that y
is 2 changes our knowledge about x but does not reduce the uncertainty of
x, as measured by the entropy. On average though, learning y does convey
information about x, since H(X |Y ) < H(X).

One may also evaluate H(Y |X) = 13/8 bits. The mutual information is
I(X;Y ) = H(X) − H(X |Y ) = 3/8 bits.

9.3 Noisy channels

A discrete memoryless channel Q is characterized by an input alphabet
AX , an output alphabet AY , and a set of conditional probability distri-
butions P (y |x), one for each x ∈ AX .

These transition probabilities may be written in a matrix

Qj|i = P (y = bj |x=ai). (9.1)

I usually orient this matrix with the output variable j indexing the rows
and the input variable i indexing the columns, so that each column of Q is
a probability vector. With this convention, we can obtain the probability
of the output, pY , from a probability distribution over the input, pX , by
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As an example, we take the joint distribution XY from exercise 8.6 (p.140).
The marginal distributions P (x) and P (y) are shown in the margins.

P (x, y) x P (y)
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The joint entropy is H(X,Y ) = 27/8 bits. The marginal entropies are H(X) =
7/4 bits and H(Y ) = 2 bits.

We can compute the conditional distribution of x for each value of y, and
the entropy of each of those conditional distributions:

P (x | y) x H(X | y)/bits
1 2 3 4

1 1/2 1/4 1/8 1/8 7/4
y 2 1/4 1/2 1/8 1/8 7/4
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H(X |Y ) = 11/8

Note that whereas H(X | y =4) = 0 is less than H(X), H(X | y =3) is greater
than H(X). So in some cases, learning y can increase our uncertainty about
x. Note also that although P (x | y =2) is a different distribution from P (x),
the conditional entropy H(X | y =2) is equal to H(X). So learning that y
is 2 changes our knowledge about x but does not reduce the uncertainty of
x, as measured by the entropy. On average though, learning y does convey
information about x, since H(X |Y ) < H(X).

One may also evaluate H(Y |X) = 13/8 bits. The mutual information is
I(X;Y ) = H(X) − H(X |Y ) = 3/8 bits.

9.3 Noisy channels

A discrete memoryless channel Q is characterized by an input alphabet
AX , an output alphabet AY , and a set of conditional probability distri-
butions P (y |x), one for each x ∈ AX .

These transition probabilities may be written in a matrix

Qj|i = P (y = bj |x=ai). (9.1)

I usually orient this matrix with the output variable j indexing the rows
and the input variable i indexing the columns, so that each column of Q is
a probability vector. With this convention, we can obtain the probability
of the output, pY , from a probability distribution over the input, pX , by
right-multiplication:

pY = QpX . (9.2)

P(x | y) = P(x, y) / P( y)

H (X | y) = P(x | y) log 1
P(x | y)x∈Ax

∑

H (X |Y ) = P( y)H (X | y)
y∈AY

∑

H (X |Y ) = 1.375bits
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butions P (y |x), one for each x ∈ AX .

These transition probabilities may be written in a matrix

Qj|i = P (y = bj |x=ai). (9.1)

I usually orient this matrix with the output variable j indexing the rows
and the input variable i indexing the columns, so that each column of Q is
a probability vector. With this convention, we can obtain the probability
of the output, pY , from a probability distribution over the input, pX , by
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As an example, we take the joint distribution XY from exercise 8.6 (p.140).
The marginal distributions P (x) and P (y) are shown in the margins.
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The joint entropy is H(X,Y ) = 27/8 bits. The marginal entropies are H(X) =
7/4 bits and H(Y ) = 2 bits.

We can compute the conditional distribution of x for each value of y, and
the entropy of each of those conditional distributions:
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y 2 1/4 1/2 1/8 1/8 7/4
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4 1 0 0 0 0
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Note that whereas H(X | y =4) = 0 is less than H(X), H(X | y =3) is greater
than H(X). So in some cases, learning y can increase our uncertainty about
x. Note also that although P (x | y =2) is a different distribution from P (x),
the conditional entropy H(X | y =2) is equal to H(X). So learning that y
is 2 changes our knowledge about x but does not reduce the uncertainty of
x, as measured by the entropy. On average though, learning y does convey
information about x, since H(X |Y ) < H(X).

One may also evaluate H(Y |X) = 13/8 bits. The mutual information is
I(X;Y ) = H(X) − H(X |Y ) = 3/8 bits.

9.3 Noisy channels

A discrete memoryless channel Q is characterized by an input alphabet
AX , an output alphabet AY , and a set of conditional probability distri-
butions P (y |x), one for each x ∈ AX .

These transition probabilities may be written in a matrix

Qj|i = P (y = bj |x=ai). (9.1)

I usually orient this matrix with the output variable j indexing the rows
and the input variable i indexing the columns, so that each column of Q is
a probability vector. With this convention, we can obtain the probability
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H (X ) = 7 / 4bits = 1.75bits

Equal to H(X)

Larger than H(X)
Smaller than H(X)

H (X |Y ) = 1.375bits

H (X |Y ) ≤ H (X )
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Channel
X Y

I(X ;Y ) = H (X )− H (X |Y )

H(X)
H(X |Y)

! For some y

! H(X | y) > H(X) - Some y increase the uncertainty about X

! H(X | y) < H(X) - Some y reduce the uncertainty about X

! H(X | y) = H(X) - Some y do not change the uncertainty about X
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! The chain rule for entropy follows from the decomposition of a joint probability 

Show that H(X, Y) = H(X) +  H(Y | X)

36

H (X ,Y ) = P(x, y) log 1
P(x, y)xy

∑

H (X ,Y ) = P(x)P( y | x) log 1
P(x)P( y | x)xy

∑

H (X ,Y ) = P(x)P( y | x) log 1
P(x)

+ log 1
P( y | x)

⎛
⎝⎜

⎞
⎠⎟xy

∑

H (X ,Y ) = P(x) log 1
P(x)

+
x
∑ P(x) P( y | x) log 1

P( y | x)y
∑

x
∑

H (X ,Y ) = H (X )+ H (Y | X )

H (X ,Y ) = P(x) log 1
P(x)

P( y | x)
y
∑ +

x
∑ P(x) P( y | x) log 1

P( y | x)y
∑

x
∑
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Show that the Mutual Information is symmetric
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I(X ;Y ) = H (X )− H (X |Y )

= P(x) log
1
P(x)x

∑ − P(x, y) log
1

P(x | y)xy
∑

= P(x, y) log
P(x | y)
P(x)xy

∑

= P(x, y) log
P(x, y)
P(x)P( y)xy

∑ I(X ;Y ) = P(x, y) log
P(x, y)
P(x)P( y)xy

∑

= P(x) log
1
P(x)x

∑ P( y | x)
y
∑ − P(x, y) log

1
P(x | y)xy

∑

= P(x, y) log
1
P(x)xy

∑ − P(x, y) log
1

P(x | y)xy
∑
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Show that the Mutual Information is symmetric

! This expression is symmetric in x and y so 

38

I(X ;Y ) = H (X )− H (X |Y )

I(X ;Y ) = H (X )− H (X |Y ) = H (Y )− H (X )

I(X ;Y ) = P(x, y) log
P(x, y)
P(x)P( y)xy

∑

I(X ;Y ) = H (Y )− H (Y | X )
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Show that the Mutual Information is non negative

! The mutual information is a relative entropy between the distribution P(x,y) and the 

distribution P(x).P(y), and so due to the Gibbs’ inequality I(X; Y) ≥ 0

! The equality only if P(x, y) = P(x)P(y), that is, if X and Y are independent

39

I(X ;Y ) = P(x, y) log
P(x, y)
P(x)P( y)xy

∑
DKL (P ||Q) = P(x)log P(x)

Q(x)x
∑

DKL (P ||Q) ≥ 0

I(X ;Y ) = DKL(P(x, y) || P(x)P( y))
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Further Reading
! Recommend Readings 

" Information Theory, Inference, and Learning Algorithms from David MacKay, 2015, 

pages 138 - 144. 

! Supplemental readings:
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What you should know
! The meaning and the definition of:

" H(X, Y)

" H(X | y) and H(X | Y)

" I(X; Y)

! The main relations between H(X), H(Y), H(X, Y), H(X | Y), H(Y | X), I(X.Y)

! How to interpret them in terms of a communication channel

! The main properties of them

! How to express some in terms of relative entropies
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